0-7695-1754-4/02 $17.00 © 2002 IEEE

PERUSE: An Unsupervised Algorithm for
Finding Recurring Patterns in Time Series

Tim QOates

Department of Computer Science and Electrical Engineering
University of Maryland Baltimore County
Baltimore, MD 21250
oates@cs.umbe.edu

Abstract

This paper describes PERUSE, an unsupervised algo-
rithm for finding recurring patterns in time series. It
was instially developed and tested with sensor data from
a mobile robot, i.e. noisy, real-valued, multivariate time
series with variable intervals between observations. The
pattern discovery problem is decomposed into two sub-
problems: (1) a supervised learning problem in which a
teacher provides exzemplars of patterns and labels time
series according to whether they contain the patterns;
(2) an unsupervised learning problem in which the time
series are used to generate an approzimation to the
teacher. Ezperimental results show that PERUSE can
discover patterns in audio data corresponding to recur-
ring werds in natural language uiterances and patierns
in the sensor data of a mobile robot corresponding to
qualitatively distinct outcomes of taking actions.

1. Introduction

We are interested in the unsupervised discovery of re-
curring patterns in noisy, real-valued, multivariate time
series. Such time series can be produced, for example,
by measuring indicators of the state of the economy,
a patient in an intensive care unit, an industrial pro-
cess, and so on. This paper describes the PERUSE algo-
rithm {Pattern Extraction from Real-valued sequences
USing Expectation maximization), which was designed
to address this problem. PERUSE was initially devel-
oped as a tool for discovering frequently recurring words
in raw audio data, such as radio broadcasts. Because
the algorithm is unsupervised and requires no domain
knowledge, it solves a problem that is very similar to
that faced by a child learning its first language - word
discovery. This problem exhibits all of the difficulties
that PERUSE was designed to handle, and will therefore
be used as a motivating example.

Adults perceive spoken utterances as containing dis-
crete words, sometimes leading to the false impres-
sion that word boundaries are somehow marked in the
acoustic signal, much as word boundaries in written
text are marked with spaces. It becomes clear that

330

this is not the case when listening to someone speak
in an unfamiliar language. It is usually impossible to
tell where one word leaves off and another begins. How
do children discover sound patterns corresponding to
words in their native language?

Consider the difficulties posed by the word discovery
problem. The learner does not know how many distinct
sound patterns (i.e. words}) occur in the utterances, nor
does it know whether or where a given pattern occurs
in a given utterance. Different patterns have different
temporal extents, e.g. the word “red” takes less time
on average to utter than the word “conflagration”, and
different occurrences of the same pattern are never ex-
actly the same, i.e. the audio waveforms corresponding
to utterances of the same word by the same speaker are
never identical. Some patterns are wholly contained in
other patterns, e.g. “red” and “redolent”. Finally, the
learning problem is unsupervised. There is no teacher
providing infermation beyond that contained in the ut-
terances themselves.

The pattern discovery problem addressed by PERUSE
can be conceptually decomposed into two subproblems.
The first is a supervised learning problem in which a
teacher provides exemplars of the patterns to be identi-
fied and labels time series according to whether they
contain the patterns. Qur solution to this problem
is based on the Expectation Maximization (EM) algo-
rithm and results in a representation of each pattern
that can be used to determine the probability that a
new time series contains a pattern and to localize the
occurrence in time. The second subproblem is an unsu-
pervised learning problem in which the time series are
used to generate an approximation to the teacher. By
composing the solutions to these two subproblems we
obtain an unsupervised learning algorithm.

The remainder of the paper is organized as follows.
Section 2 formally defines the pattern discovery prob-
lem. Sections 3 and 4 describe the two subproblems and
their solutions. Section 5 describes experimental results
showing that PERUSE can discover patterns in audio
data corresponding to recurring words in natural lan-

guage utterances (in English, German and Mandarin)
and patterns in the sensor data of a mobile robot cor-
responding to qualitatively distinct outcomes of taking
actions. Finally, section 6 summarizes, reviews related
work, and points to future research directions.

2. Problem Description

We assume that a complete time series is generated
by repeatedly selecting a pattern from a set of patterns
according to some distribution and generating an ex-
erplar. Some patterns may be chosen more frequently
than others depending on this distribution. The goal of
PERUSE is to discover the patterns used most frequently
to generate segments of the time series data that it re-
ceives as input. This section makes precise the terms
lime series and peattern, and the next two sections de-
scribe how PERUSE identifies the latter in the former.

Let an observation be a pair of the form (x, ¢}, where
x € R" and ¢ € R. That is, x is a vector of length n
whose elements are real numbers, and ¢ is a real number
that represents the time at which x was recorded. The
vector x might contain the values produced by a set
of n sensors attached to an ICU patient or the closing
prices of a basket of n stocks.

A time series of length [is a set of I time-ordered
observations:

S={(x,t)f1<i<i}

The fact that the observations are time-ordered means
that ¢; < t; whenever ¢ < j. Let x¥ denote the value
of the k' element in the vector observed at time t;.
A multivariate time series contains the following n uni-
variate constituent time series:

S={{{=f,t;}l1<i<}1<k<n}

We define patterns in terms of a representation and
a metric. The representation defines a space of possible
patterns, and the metric makes it possible to identify
-“good” patterns in the data. Let a pattern element be
a pair of the form (%, Af), where % € {R? Unil}" and
At € R Patterns occur in multivariate time series
containing 7= constituent time series, so both observa-
tion vectors and pattern element vectors must contain
n elements. A pattern of length ! is represented as a
totally-ordered set of [pattern elements:

P={(x;A)1<ji<l}

The above is a precise specification of pattern syntax.
We now turn our attention to pattern semantics, i.e. the
roles of x and At.

Let %* be the k** element of pattern element vector
%. When %% = nil, the pattern element says noth-
ing about the value in the k** constituent time series.

331

When %* € R2, its value specifies the mean and stan-
dard deviation of a normal distribution to which the
value in the k** constituent time series can be com-
pared, i.e. ¥ = (1%, 0%). Let u(%*) and o(%*) be the
mean and standard deviation associated with x*, re-
spectively. Let p(z|p,o) be the value of the normal
probability density function with parameters p and o
at z. Given an observation vector, x, and a pattern ele-
ment, vector, X, it is possible to compute the probability
of x given % as follows:

- | if x* = nil
p(x|%) = kl;ll { p(x*|p(k*), 0 (k%)) otherwise }

Given a time series, &, and a pattern, P, it is natural
to ask whether and where P occurs in S. Let ¥ be a
mapping from pattern elements in P to observations in
S. That is, if ¥(i) = j, then the i*? pattern element
maps to the j** observation. + specifies where P might
occur in §.

Given a mapping, it is possible to compute the time
interval between two consecutive observations in the
mapping, i.e. £y (iy1) — tyy- The two real numbers that
comprise At; are the mean and standard deviation of a
normal distribution to which this time interval can be
compared. When < maps onto an actual occurrence of
P in &, it is assumed that the time between two obser-
vations in & that correspond to two consecutive pattern
elements in P is normally distributed (or at least that
the normal is a good approximation to the true distri-
bution).

It is now possible to compute the probability that the
observations in § onto which P is mapped represent an
occurrence of the pattern as follows:

-1
pSIPY) = plymlk) [] ol %) =
=1

Pltyiryy — Ly (AL, o(AL)) (1)

Equation 1 is simply the product of the probabilities
of each observation vector given the corresponding pat-
tern element vector and the probabilities of the time
intervals between consecutive observations in the map-
ping given At for the corresponding pattern element.
The probability p(x;|%,() is outside of the product
because x; is the last observation in the mapping and
there is thus no corresponding At;.

Note that PERUSE must search over two spaces to
find candidates with high scores - the space of candi-
date patterns and, for each candidate, the space of map-
pings from candidates onto time series (for the purpose
of evaluating equation 1). The EM algorithm lies at
the core of the search over candidate space, and dy-

namic programming is used to find optimal mappings
(i.e. those that maximize equation 1) efficiently.

3. A Supervised Subproblem

Given a set of exemplars of a particular pattern, es-
timating the parameters of the pattern is trivial. Let
P be a pattern and let £ = {851, S52,...,8m} be a set of
m exemplars of P. Each element of £ contains a single
pattern, ie. P. Let x;{S) denote the i** observation
vector in time series §, and let A¢;(S) be defined anal-
ogously. Let u{%¥) denote the mean specified by the k**
element of the i** vector in P, and let #{%¥) be defined
analogously, The maximum likelihood (ML) estimate
of u(xF) is as follows:

_ LsecXi(S)

plEy) = =2

That is, the ML estimate of u(%¥) is simply the mean
of the values generated from distribution %¥. One such
value appears in position xf in each of the exemplars.

Likewise, the ML estimate of o(%F) is as foliows:

. 1/2
(i) = (b:seg(xf (fn) - p(xf))z) @
The ML estimate of u{At,) is as follows:
u(at;) = Zseellon 21 (3)

m

That is, the ML estimate of x{At;) is simply the mean
of the values generated from distribution At;. One such
value appears in each exemplar as the time interval be-
tween observation 7 and observation i + 1. Finally, the
ML estimate of o(At;) is as follows:

m

o —) — A 1/z
o{At;) = (ZSEE(UH—I t;) P(Atl))) (4)

Given a set of exemplars generated from P, estimating
the parameters of P is straightforward.

Unfortunately, we do not have access to a set of
clearly delineated exemplars of any patterns. In this
section we assume that we have access to a single such
exemplar and a set of time series that are labeled ac-
cording to whether or not they contain an exemplar as
well. Note that the time series that do contain an exem-
plar will in general contain additional unrelated data,
perhaps generated by some other pattern or patterns.

It should be clear that given a set of time series con-
taining exemplars of a pattern and the mappings for
each of the time series, we can extract the exemplars
and compute the maximum likelihood estimates of the

332

means and standard deviations of the pattern elements
as described above. The resulting formula for p(xX¥),
which applies the mapping function « to translate po-
sitions in pattern elements to positions of exemplars in
time series, is as follows:

Yosee xﬁsu) (5)

ok
wx) = m
The value generated by distribution %¥ is found at po-
sition x¥_ . in the time series. The formulas for o (%),
u(AL;), and o{At;) can be obtained in an analogous
manner from equations 2, 3, and 4, respectively.

This is a classic example of a hidden data problem.
Given the mappings, it is easy to compute the maxi-
mum likelihood estimates of p(%F), o(%F), u(At;), and
o(At;) . However, we are not given access to the map-
pings. This difficulty is overcome with the EM algo-
rithm.

Suppose that all of the mappings are of the form
7¥s(f) = i + Cg for some constant Cg that differs for
each time series S. Such mappings will be called con-
secutive mappings because consecutive pattern elements
are mapped to consecutive observations in the time se-
ries. Let zs; be an indicator variable defined for time
series §. We will use the simpler notation z; when the
identity of & is clear. By definition, z; = 1 if an an
occurrence of the pattern ends at position 7 in S, oth-
erwise z; = 0, Under the assumption that all mappings
are consecutive, knowledge of zs; for all S and all 1
is sufficient to determine the maximum likelihoed esti-
mates of the pattern’s parameters.

The E step involves computing the expected value
of zs; given the current estimate of . Recall that
zg,; = 1 if an exemplar of P ends at position 7 in time
series S and it equals zero otherwise. Therefore, the
expected value of zg; is 0 times the probability that
an exemplar of P does not end at position ¢ in S plus
1 times the probability that an exemplar of P ends at
position ¢ in &, which is simply the latter probability
(see equation 1).

In the M step, new parameter estimates are com-
puted given the expected values of the hidden data. The
formula for computing p(%%), which will be explained
in detail shortly, is given below:

Ysee Z!;'S:l|p|(z5,.i * xf_rp|+1+,-(8))

5
Ysee Ei,-z'[pl 28,4

Consider the numerator in the above expression. The
outer surn is just a sum over all of the time series. For
each time series, S, the inner sum is over all locations
in & where a consecutive mapping of pattern P can

w() = (5)

end. Inside this double sum is a product of two quan-
tities. The first is simply zs ;, the probability that an
exemplar of P ends at position j7 in §. The second
quantity is the value that would have heen generated
by p(%F) in that exemplar. If the exemplar ends at po-
sition j, then it begins at position j — length(P)+1, so
j —length(P) + 1 +i is the index in & to which the "
element of P is mapped. The denominator is the same
except the double sum is just over the values of zg ;.
The formula for computing o(%%), which is similar to
equation 5, is given below:)

Tsee Lhop(zs.s % 05 o111 14(S) — w(x))2)
Lsee E;ilrm 25,

The formula for u(At;) is an analogous extension to
equation 3, and the formula for o(At;) is an analogous
extension to equation 4.

This section has assumed that we are given an ex-
emplar of a particular pattern to be discovered, as well
as a set of time series labeled according to whether or
not they contain exemplars of the pattern. To ensure
that EM identifies the parameters of the target pattern,
rather than some other common pattern, our initial
guess as to the parameters of P is guided by the exem-
plar. In particular, the means of the pattern are initial-
ized to be the values in the exemplar, i.e. u(%}) = x¥,
where x¥ is the k** item in the i** element of the ex-
emplar. The standard deviations are all initialized to
be a small constant value. The goal is to start EM in
an area in parameter space that is close to the set of
parameters that we are seeking.

There is one last issue to contend with. All of the
discussion to this point has assumed consecutive map-
pings. In general, such mappings will be inadequate.
Given a time series 8, a pattern P, and the constraint
that mapping v must end at location i is 8, it is possible
to use dynamic programming to identify the mapping
that maximizes p(S|P,v) in O(|S]| * [P}) time. When
computing parameters in the M step, we use the map-
ping identified by dynamic programming that ends at
a given position rather than the consecutive mapping
that ends at that position.

4. Approximating the Teacher

Given an exemplar of pattern P and a set of time
series labeled according to whether or not they contain
exemplars, the preceding section described how the EM
algorithm can be used to estimate the parameters of P.
This section describes how an approximation to this
training information, i.e. exemplars and labels, can be
obtained in an unsupervised manner from the data.

Recall that we assume a time series is generated by

333

repeatedly selecting a pattern according to some distri-
bution over patterns and then generating an exemplar
of the chosen pattern. The time series is the concate-
nation of these exemplars. Time series generated in
this manner have two useful properties. First, by def-
inition, there are many exemplars in the data of fre-
quently occurring patterns. We expect there to be one
or more “good” exemplars of frequently occurring pat-
terns. Second, pattern boundaries are characterized by
a lack of predictability. Within a pattern there is reg-
ularity that can be used to predict future data. But
when a pattern ends the next observation depends en-
tirely on which pattern is chosen from the distribution
over patterns.

PERUSE uses these observations to identify windows
of data in the time series that fall within frequently
occurring patterns. This is accomplished by passing a
window that spans window_size time steps over each of
the time series. window_size is a user-defined param-
eter that must be set appropriately for each problem
domain. For each such window of data, a pattern P
is created by initializing its parameters from the data
inside the window as described in section 4. For each
time series, 8, including the one frem which the win-
dow of data was taken, dynamic programming is used
to identify the mapping that yields the highest value
of p(8|P,~s) for that time series. That is, dynamic
programming is used to find the mapping that is most
likely to represent an exemplar of P in each of the time
series. This mapping is called the mazimum probability
mapping.

Next, the min_maiches time series whose maxi-
mum probability mappings yield the highest values
of p(S|P,vs) are identified. min_maiches is a user-
defined parameter, and typical values are small, such
as three or four. Because these time series contain the
best matches to the data in the window from which P
was initialized, they are assumed to contain exemplars
of P. The window of data from which P was initialized
is considered an exemplar, and this exemplar and the
min_maiches time series just identified are passed to
the algorithm described in section 3 to obtain an ML
estimate of the parameters of the underlying pattern.

When the parameters of P have been estimated, dy-
namic programming is once again used to identify the
maximum probability mapping for each of the time se-
ries used in the estimation process. The sum of the log-
arithms of the probabilities associated with these map-
pings is recorded. This value is plotted as a function of
window position for each of the time series.

The time series and window location that yield the
highest value are identified. The data within this
window are assumed to fall completely within a fre-

quently occurring pattern {i.e. one that occurs more
than min_matches times) because several “high qual-
ity” matches to the pattern occur in the data.

Let £ be the set of min_matches time series used
to estimate the parameters of the pattern underlying
the data in the window, and let P be the result of the
estimation process. Because the window spans a fixed
time interval, the next step is to identify the true tem-
poral extent of the underlying pattern. This is accom-
plished by extending the window used to initialize P by
grow_size units of time. This new window of data and
the time series in £ are then handed to the algorithm
described in section 4, resulting in a new pattern P’

Suppose P was initialized from time series data span-
ning time t; to time £5, That means that P’ spans {; to
t2 + grow_size. If the quality of the maximum proba-
bility mappings for P’ are higher for the portion of the
pattern initialized from the data spanning time #; to
t; are significantly higher than for the portion initial-
ized from the data spanning time ¢y to 3 + grow_size,
this is taken as an indication that growing the window
resulted in a pattern boundary being crossed. The win-
dow is repeatedly extended by adding grow_size time
steps to ¢ until a boundary crossing is detected, and
then the window is extended in the other direction by
subtracting grow_size time steps from t; until a bound-
ary crossing is detected. The final values of {; and ¢
are taken to be the true temporal extent of the pattern
underlying the original window of data.

How is it possible to determine when the quality of
one portion of a maximum prebability mapping is sig-
nificantly higher than the quality of another portion?
Recall that when vs(i) = 7, it is the case that the i
pattern element maps to the j:* observation in 8. That
is, it is the case that X; maps to x;. The quality of this
part of the total mapping is evaluated as follows (see
equation 1):

g(P, 5,1, j) = log (p(x;|%:)p(tj41 — t5|AL))

Let Qoa be the set of quality values associated with the
portion of pattern P that was initialized from the data
spanning time {; to t;.

Qo!d = {Q(P,S,i,’)fg(i))ls € ga t _<, t; < t?}

Let Qe be the set of quality values associated with
the portion of pattern P that was initialized from the
data spanning time ¢, to te + grow_size. To compare
the quality of the matches due to these two portions of
P we can compare the values in Q¢ and Qyeq. This
comparison is made with a standard one-tailed i-test
using a significance level of asemporer which is specified
by the user. If the result of the i-test is not signif-
icant at the specified level, then a pattern boundary

334

has not been crossed and the bounds of the window are
extended again.

The next step is to determine whether and where the
pattern occurs in the other time series. This is accom-
plished as follows. Dynamic programming is used to
determine the maximum probability mapping for each
of the time series. The min.matches+1 time series with
the highest associated probabilities are identified. The
pattern is then retrained on these time series. Then a
large number of exemplars are generated from the pat-
tern by sampling from the distributions in each x and
At and their probabilities given the pattern are calcu-
lated. The result is a distribution of such probabilities.
Then the probability of the maximum likelihood map-
ping for each of the min_maiches time series given the
pattern is compared to this distribution. If any of these
values is smaller than 100% {1 ~,.r:e;)% of the values in
the distribution, then it is assumed that the correspond-
ing data were not generated by the pattern. In this case,
it is assumed that the original min_matches time series
are the only ones that contain exemplars. Otherwise,
the value of min_malches is increased by one and the
procedure is repeated until either min_matches equals
the total number of time series or the statistical test
fails. The end result is the identification of which time
series contain exemplars of the pattern and where they
occur, as indicated by the maximum probability map-
pings.

5. Experiments

This section describes the results of two sets of ex-
periments that show PERUSE can discover patterns in
audio data corresponding to recurring words in natural
language utterances and patterns in the sensor data of
a mobile robot corresponding to qualitatively distinct
outcomes of taking actions.

In the first experiment, four subjects were asked to
create random configurations of styrofoam blocks of
various sizes, shapes and colors. Fifty of these configu-
rations were then shown to a native speaker of English,
a native speaker of German, and a native speaker of
Mandarin. They were asked to generate natural lan-
guage utterances describing what they saw. The only
restriction placed on the utterances was that they had
to be truthful statements about the scenes. This, cou-
pled with the limited number of colors, sizes and shapes
exhibited by the blocks, ensured that some words would
be used in multiple utterances. One of the configura-
tions was described by the English speaker as follows:
“The cone is on top of the rectangle and to the left
of the red ball.” This is typical of the kind of utter-
ances that were recorded. The English speaker used 60
unique words in the 50 utterances and each utterance

contained on average 11.06 words. These quantities are
89 and 11.46 for the German speaker, and 37 and 19.04
for the Mandarin speaker.

Utterances were recorded with a head-mounted,
noise-canceling microphone at a sampling rate of 8000
Hz. The raw audio signals were pre-processed using the
publicly available RASTA-PLP package to extract 20
coefficients every 80 samples (Hermansky et al., 1991).

All 50 utterances for a given language, appropriately
pre-processed, were passed to the PERUSE algorithm
to find recurring patterns, i.e. words. The algorithm
requires the user to specify a number of parameters.
These parameters were tuned on the English utterances
and were used unchanged on the German and Mandarin
utterances. The performance of the algorithm appeared
to be robust with respect to the choice of parameters,
with small changes in parameters leading to little or
no effect on performance. The specific parameter val-
ues used were as follows: window_size = 2000 samples,
thereby spanning one-fourth of one second of speech;
min_matches = 4 time series; grow_size = 500 sam-
ples and spans one-sixteenth of a second; aemporal =
0.00001; ctgeries = 0.00001.

To understand the performance of PERUSE on this
task, consider table 1. Of the 60 words used by the En-
glish speaker the table shows those words that occurred
four or more times. Because PERUSE is designed to find
frequently recurring patterns, it has no hope of finding
words that occur only once or twice. Inflected variants
of words are not shown. For the purpose of assessing
the performance of PERUSE, the algorithm is considered
to be successful if it discovers the base form of a word
and identifies inflected variants as instances of the base
form. For example, it is correct for the algorithm to say
that the word “balls” represents an occurrence of the

word “ball”.

Table 1. The list of the words used frequently by the English
speaker with those words that were discovered by PERUSE
shown in bold.

A Green Small
Above Is Square
And Large That’s
Balanced Little The

Ball Next to To
Below Of Top

Big On top of Touching
Blue One Two
Circle Rectangle Yellow
Cone Red

335

Those words identified by PERUSE are shown in bold.
Intuitively, a word is said to be identified when a pat-
tern is discovered that can be used with high accuracy
both to determine whether an occurrence of the word
oceurs in an utterance and to localize such occurrences
in time. More concretely, each pattern P discovered by
PERUSE was used to determnine whether and where it oc-
curred in each of the input time series. An occurrence
of pattern P is said to correspond to an occurrence of
word W if the starting and ending points of the occur-
rence of P match the starting and ending points of the
occurrence of W within a temporal window no greater
than 5% of the total length of the occurrence of W.
Given all of the locations in the time series where the
pattern has been identified to occur, word W is said to
be identified by pattern P if 90% or more of the occur-
rences of P correspond to occurrences of W and if no
more than 10% of the occurrences of P do not corre-
spond to occurrences of W. That is, the ratio of hits to
misses must be at least 9-to-I and the ratio of hits to
false positives must be at least 9-to-1.

Several aspects of table 1 are noteworthy. First,
PERUSE discovered more than 65% of the frequent words
used by the English speaker. This is a remarkable feat
given that the algorithin has access to a mere 50 ut-
terances and that it does not make use of any knowl-
edge about the English language. In particular, it has
no knowledge of characteristics of human speech that
indicate word boundaries and it has no knowledge of
phonemes. Virtually all past work on word discovery
with real utterances has assumed access to some knowl-
edge of this type.

Second, both "next to” and “on top of” were discov-
ered as single word units. On the face of it, this is an
error. However, on close inspection of the transcripts of
the English utterances, it is clear that the algorithm did
exactly the right thing in these two cases. Every time
the English speaker uttered the word “next” he said
“next to”, and every time he uttered the word “on” he
said “on top of”.

In virtually all cases, patterns discovered by PERUSE
erred on the side of misses rather than false positives.
That is, the patterns would more often fail to identify
an occurrence of a word than say that a word occurred
where it didn’t. It is possible that raising the value
of ogerics can shift this balance in the other direction.
Also, the patterns tended to match too much of the
time series rather than too little. That is, the patterns
would often match all of the data corresponding to an
occurrence of the underlying word plus some amount of
additional adjacent data.

The results for German and Mandarin were similar,
with 72.9% of the German words that occurred four or

more times being discovered and 78.4% of the mandarin
words. Again, these results are impressive given the
relatively small sample of training data and the total
lack of any knowledge of language and linguistics on
the part of the algorithm.

In the second experiment PERUSE was used to iden-
tify patterns in the sensor data of a mobile robot cor-
responding to qualitatively distinct outcomes of taking
actions. The robot was given a controller parameter-
ized by two real numbers that influenced how its move-
ments would be affected by objects visible in the im-
ages returned by a CCD camera {Braitenberg, 1984).
The robot explored its two-dimensional action space by
stochastically selecting a pair of parameters for the con-
troller and running it for a fixed amount of time. Prior
to running the controller, a single object was placed in
a random location in the robot’s environment. Sensory
information included the size of the object in pixels, the
coordinates of its centroid in the visual field, its mean
hue/saturation/intensity, the height and width of the
bounding box around the object, and a wavelet-based
representation of the shape of the object. Each of these
values was recorded at a rate of approximately 10 Hz
during invocations of the controller.

Data from a total of 50 invocations of the controller
were gathered, and PERUSE was applied to the result-
ing time series in an effort to find patterns, i.e. possi-
ble effects of running the controller. Note that there
were a total of 250 time series with one set of 50
time series for each of the five groups of sensors de-
scribed above. PERUSE was applied to each of these
five sets individually. The parameters used were as fol-
lows: window_size = 15 samples, thereby spanning
one and a half seconds; min_matches = 3 time se-
ries; grow_size = 5 samples, i.e. one half of a second;
Qtemporal = 0.001; ageries = 0.001.

Given the set of patterns discovered by PERUSE in
the sensor data, each experience (i.e. controller invo-
cation) was labeled according to the pattern that had
the highest likelihood match on one of its constituent
time series. This induced a pariition of the robot’s ex-
periences. A human subject was shown video of the
robot’s experiences and asked to create their own par-
tition. The similarity of these partitions was assessed
as follows. Given two pairs of experiences, we can ask
whether they were placed together or apart in the par-
tition created by the human. We can also ask whether
they were placed together or apart in the partition in-
duced by PERUSE.

The human and PERUSE agreed on whether two ex-
periences belonged together or apart 88.7% of the time.
Accordance with respect to putting experiences to-
gether is 91.9% and accordance with respect to putting

336

them apart is 88.0%. The subsequences matched hy
paiterns were on average one fifth the size of the full
time series. Clearly, PERUSE discovered those portions
of the time series that were central to the judgments
made by the human in determining whether two expe-
riences are qualitatively alike or not.

6. Discussion

The line of work that most directly influenced the
development of PERUSE comes from the bioinformatics
literature. Hertz et al. developed a greedy algorithm
for discovering a single, fixed-width pattern shared by
each member of a set of DNA sequences (Hertz et al.,
1990). Lawerence and Reilly built on this work to de-
velop an algorithm that solves the same problem using
EM (Lawrence et al., 1993). All of this work served
as the foundation for Bailey and Elkan’s MEME algo-
rithm (Bailey & Elkan, 1995), which uses data from the
sequences to serve as seed patterns and uses a heuristic
modification to EM that allows the number of occur-
rences of a pattern to be different than the total number
of sequences.

PERUSE differs from MEME in a number of impor-
tant ways. First, MEME is restricted to working with
univariate, discrete data in which there is really no no-
tion of time. Nucleotides simply follow one another
spatially. PERUSE works with continuous, multivariate
time series in which time is represented explicitly. This
leads to very different considerations, and significant
additional complexity, in determining how to represent
patterns and apply EM. For example, PERUSE allows
pattern elements to map to the same time step (i.e. in-
sertions} or to skip over time steps (i.e. deletions) when
being matched to the data. MEME does not allow ei-
ther inserticns or deletions. The patters discovered by
PERUSE can have varying widths, compared to the fixed-
width patterns discovered by MEME. Finally, to dis-
cover multiple patterns, the user of MEME must spec-
ify a parameter that tells the algorithm roughly how
many patterns there are. PERUSE continues searching
for patterns as long as the data support their existence.

The word discovery problem has been studied exten-
sively, but virtually all existing approaches assume that
utterances are represented as text with the spaces re-
moved (Brent, 1999; de Marcken, 1996; Elman, 1990;
Harris, 1954). Those algorithms that work with au-
dio data typically incorporate knowledge of the target
language, such as the phonemes that it contains (Roy,
1999). PERUSE does not require such knowledge and
therefore moving from one language to another is triv-
ial.

There has been a tremendous amount of work de-
voted to discovering patterns in time series, but in

almost every case assumptions are made that are
not made by PERUSE: that the data are categorical
{Agrawal & Srikant, 1994; Das et al., 1998; Zaki, 2001);
that patterns correspond to regions of time series gen-
erated by a single normal distribution rather than a
complex sequence of different normal distributions; that
the intervals between observations are fixed rather than
variable (Qates & Cohen, 1996); that the time series are
univariate rather than multivariate (Keogh, 1997}; that
patterns span entire time series rather than having mul-
tiple patterns in a single time series (Keogh & Pazzani,
1998).

Future work will involve creating an incremental ver-
sion of the algorithm and applying it to additicnal prob-
lem domains.

Acknowledgments

The author would like to thank Paul R. Cohen for
his support, both financial and intellectual, of the work
described in this paper, which is based on the au-
thor’s Ph.D. research. This research was supported
by DARPA/USASMDC (Defense Advanced Research
Projects Agency/U.5. Army Space and Missile De-
fense Command) under contract number DASG60-99-
C-0074. The U.S. Government is authorized to repro-
duce and distribute reprints for governmental purposes
notwithstanding any copyright notation hereon. The
views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of the DARPA /USASMDC or the

U.S. Government.

References

Agrawal, R., & Srikant, R. (1994). Fast algorithms for
mining association rules. Proceedings of the 20th In-
ternational Conference on Very Large Databases.

Bailey, T. L., & Elkan, C. (1995). Unsupervised learn-
ing of multiple motifs in biopolymers using expecta-
tion maximization. Machine Learning, 21, 51-83.

Braitenberg, V. (1984). Vehicles: Experiments in syn-
thetic psychology. The MIT Press.

Brent, M. R. (1999). An efficient and probabilistically
sound algorithm for word discovery. Machine Learn-
ing, 34, 71-105.

Das, G., Lin, K.-I., Mannila, H., Renganathan, G., &
Smyth, P. (1998). Rule discovery from time series.
Proceedings of the Fourth International Conference
on Knowledge Discovery and Data Mining (pp. 16~
22). :

337

de Marcken, C. {1996). Unsupervised language acquisi-
tion. Doctoral dissertation, MIT.

Elman, J. L. (19990). Finding structure in time. Cogni-
tive Setence, 14, 179-211.

Harris, Z. S. (1954). Distributional structure. Word,
10, 146-162.

Hermansky, H., Morgan, N., Bayya, A., & Kohn, P.
(1991). Rasta-plp speech analysisTechnical Report
TR-01-069). International Computer Science Insti-
tute.

Hertz, G. Z., Hartzell, G. W., & Stormo, G. D.
(1990). Identification of concensus patterns in un-
aligned DNA sequences known to be functionally re-

lated. Computer Applications in Biosciences, 6, 81—
92.

Keogh, E. (1997). Fast similarity search in the presence
of longitudinal scaling in time series databases. Pro-
ceedings of Ninth International Conference on Tools
with Artificial Intelligence (pp. 578-584).

Keogh, E., & Pazzani, M. J. {1998). An enhanced rep-
resentation of time series which allows fast and accu-
rate classification, clustering and relevance feedback.
Proceedings of the Fourth Internationel Conference
on Knowledge Discovery and Data Mining (pp. 239-
243).

Lawrence, C. E., Altschul, S. F., Boguski, M. S., Liu,
J. 8., Neuwald, A. F., & Wooton, J. C. (1993). De-
tecting subtle sequence signals: A gibbs sampling
strategy for multiple alignment. Science, 262, 208-
214.

Oates, T., & Cohen, P. R. (1996). Searching for struc-
ture in multiple streams of data. Proceedings of
the Thirteenth International Conference on Machine
Learning (pp. 346 — 354).

Roy, D. (1999). Learning words from sights and sounds:
a computational model. Doctoral dissertation, MIT.

Zaki, M. J. (2001). SPADE: An efficient algorithm for
mining frequent sequences. Machine Learning, 42,
31-60.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

